Section 2.1
 Limit Idea: Instantaneous Velocity and Tangent Lines

(1) Tangent Lines
(2) Secant Lines
(3) The Velocity Problem
(4) The Tangent Problem

Tangent Lines

Tangent Lines

The Tangent Line to a curve at the point \mathbf{P} is the line that "just touches" the curve at \mathbf{P}.

$$
1 \lll<\ggg 1 \rightarrow+\infty
$$

Tangent Lines

Tangent Lines

The Tangent Line to a curve at the point \mathbf{P} is the line that "just touches" the curve at \mathbf{P}.

Secant Lines

Secant Lines

The Secant Line to a curve \mathbf{F} at the points \mathbf{A} and \mathbf{B} is the line that passes through \mathbf{A} and \mathbf{B}.

A computer virus has been released which spreads through a common voicemail application preloaded on many smartphones. The following table describes the spread of this virus:

Days	0	10	20	30	40	50	60
Percent Infected	0	16	44	78	91	96	98

Find the average rate of change of infection over the intervals [20,30], [30, 40], and [20, 40]. Explain this growth with secant lines on the graph.

The Velocity Problem

Velocity

Velocity is a type of Rate of Change.
Units: $\frac{\text { miles }}{\text { hour }} \frac{\text { kilometers }}{\text { hour }} \frac{\text { feet }}{\text { second }} \frac{\text { meters }}{\text { second }}$
उOIV ${ }^{5 \text { nours }}$
$\left.199^{\prime}\right]^{3 \text { hours }}$
OOOM ${ }^{-1}$

Average Velocity

A ball is thrown upwards with a velocity of 40 feet per second. The height in feet t seconds later is given by $y=40 t-16 t^{2}$. Find the average velocity of the ball between times $[0,2],[1,2]$, and $[1.5,2]$.

The Tangent Problem

Given a point \mathbf{P} on a function \mathbf{F}, how do we find the tangent line of F at P ?

Tangent Line

The tangent line to the function $y=f(x)$ at a point P is a secant line through the point P and a point infinitely close to P on the curve.

Tangent Slope

$$
\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a} \quad \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{(a+h)-a}
$$

In a game of Quidditch at Hogwarts, a ball is thrown upwards and the heights at certain times have been recorded:

Time (seconds):	2	2.5	2.9	2.95	2.995	3
Height (feet):	20	31.25	42.05	43.51	44.8501	45

Suppose the relationship between time and height is represented by the function $H=F(T)$. Can we graph the function using the table?

If we were interested in the tangent line at time $T=3$ seconds we already have a point, $(3,45)$, on the line, but we don't have the slope!

Can we approximate it by looking at the trend of the average velocities?

Interval:	$[2,3]$	$[2.5,3]$	$[2.9,3]$	$[2.95,3]$	$[2.995,3]$
Avg Velocity:	25	27.5	29.5	29.75	29.975

WHAT IF?????

Interval:	$[2,3]$	$[2.5,3]$	$[2.9,3]$	$[2.95,3]$	$[2.995,3]$
Avg Velocity:	25	27.5	29.5	29.75	29.975

The Quidditch ball was bouncing. Table did not contain enough points on the graph. How do we avoid similar scenarios?

Linear Functions $\quad f(x)=m x+b$

Linear functions are characterized by their uniform average rates of change.

The average rate of change for a linear function between any distinct slope of the line
pair of points is the slope m.
The instantaneous rate of change at any point is the slope m.

